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Objectives
• To understand 

• the difference between fixed and random 
effects

• the benefits and limitations of growth curve 
models

• the need to adjust for within-person 
correlation
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Warning

• This is a very difficult subject to tackle with 
no formulas

• Promise:  I will keep them to a minimum
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Review of Analysis of Variance

• Extension of two-sample t-test to more 
than 2 groups

• Compare variability within a group (error) 
to the variability between groups
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♦Hypotheses:H0:
H1:            for some

♦Test statistic:
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Simple Example

• Measure sodium content in eight samples 
of each of six brands of beer

Sodium Content in Lager

Beer Brand
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ANOVA Analysis
• Question:  Do the mean levels of sodium in beer 

differ between these six brands?
• Yij=µi=α+βi+εij where i=brand, j=sample
• εij is the error, normally distributed with variance 
σ2 and mean 0

• The null hypothesis is that β1=β2= …=β5=β6
• That is, all βi’s are equal which would mean that 

the mean levels of Yij are the same for all brands
• P-value<0.0001 using an F-test
• Interpretation:  Sodium content varies across 

these six brands of beer
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Residual Plot
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Random Effects Analysis
• Question:  Does sodium content vary across brands of beer?
• Yij=α+βi+εij where brand, j=sample
• εij is the error, normally distributed with variance σ2 and mean 0
• We’re not interested in these six particular brands of beer, but in

whether there is beer to beer variability 
• βi is a random effect, norm dist with variance σβ

2 and mean 0
• The null hypothesis is that σβ

2 =0, no variability between βi’s
• If σβ

2=0, then all βi=0
• P-value<0.0001 using the same F-test
• Interpretation:  Sodium content varies across beer brands
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Model consequences

• The variance of Y is the sum of within and 
between variances

• Var(Yij) =Var(α+βi+εij)= σ2 + σβ
2

• Two samples of beer from the same brand 
are more similar than samples of two 
different brands
– Two samples of the same brand: Correlation 

is σβ2/(σ2 + σβ2) 
– Different brands of beer:  Correlation is 0
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Definitions

• “A factor is random if its levels consist of a 
random sample of levels from a population 
of possible levels”

• “A factor is fixed if its levels are selected 
by a nonrandom process or if its levels 
consist of the entire population of possible 
levels”

• Milliken and Johnson
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Random or Fixed?

• “If some form of randomization is used to 
select the levels included in the 
experiment, then the factor is random.”  
Milliken and Johnson

• Be careful—clinics may or may not have 
been selected at random



July 28, 2005 15

Fixed and Random Effects

• Fixed Effects
– Subject information

– Usually care about 
these effects (e.g., 
gender)

– Often of primary 
interest

• Random effects
– Adjusts for correlation 

within subject, family, 
practice, etc.

– Usually don’t care 
about these effects 
(e.g., subject, clinic)

– Often nuisance 
parameters
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Mixed models

• Contain both fixed and random effects
• Usually fit using “maximum likelihood”
• That is, pick model parameters that would 

maximize the chance of observing the 
data that was actually observed
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Growth Curve Models

• Also called “Latent Growth Curve 
Modeling”

• Similar to Analysis of Covariance 
(ANCOVA)

• Data within a person are assumed to 
change linearly over time

• Each person has a subject-specific 
intercept and slope

• Might be over used in RCTs
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Example—Bone Mineral Density

Ambrosius and Hui, Statistics in Medicine, 2004
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Simulated Growth Curve Example
Growth Curve Data
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Growth Curve Model

• Yij=(α + αi)+ (β + βi) tij + εij

• i denotes subject and j denotes time
• Have both fixed (α and β) and random 

components (αi, βi, and εij)
• αi and βi are jointly correlated and 

independent of εij

• αi and βi are latent variables-LGC
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Model Implications

• Data within a subject are correlated
– Cov(Yij,Yij’)= ...BMOA…=                                        

σα2 + (tij+tij’) σαβ + tij tij’ σβ2 

– Var(Yij) = σα2 + 2 tij σαβ + (tij’)2 σβ
2 

• Work with someone familiar with these 
models when you first use them!
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Bivariate Normality
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Marginal distributions are 
normal
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Fitted Growth Curve Model
Individual slopes
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Fitted Model

• Yij=α + αi + (β + βi) tij + εij

• Yij=33.06 + 2.04 tij
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Use in RCTs

• Does rate of change 
differ between 
treatment and 
control?

• Does intercept differ?  
Usually groups are 
“the same” at 
baseline in RCTs 
although there will be 
slight differences
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Different Lines

• Extension of previous model
• Yijk=(α + αi +γk)+ (β + βi+ δk) tijk + εijk
• k indicates group
• γk is effect of treatment on intercept—

should be close to 0 in RCT
• δk is effect of treatment on slope—usually 

of primary interest in these models
• May also have other covariates
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Growth Curves Considerations
• Seems to be in vogue but is not a 

panacea
• Assumes linearity of treatment 

over time
• Often see an early effect followed 

by  maintenance
• Uses fewer degrees of freedom 

for time than using time as a factor
• Growth curve models are a 

special case of mixed models, 
much like regression is a special 
case of ANOVA

• Careful:  I’ve seen really bad grant 
applications using latent growth 
curves.  (E.g., assuming slope of 
placebo group is 0)
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Longitudinal Mixed Models

• Other kinds of mixed models that don’t 
assume linearity

• Mixed models can account for within 
person correlation (as well as within 
family, within practice, etc.)
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Why Adjust for Correlation?

• Subjects within clusters are usually correlated 
(families, practices, sites, etc.)

• Measurements on the same subject are usually 
correlated

• Ignoring correlations usually results in a belief 
that we have more information than we do

• Ignoring correlations increases chance of falsely 
rejecting the null
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Adjusting for Correlation
• Compound Symmetry

• CS used in repeated 
measures analysis of 
variance

• Unstructured

• And many more…(SAS 
manual lists 31)
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Longitudinal Mixed Model Example
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Within-Subject Correlation
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Example
• Sample Means:

– Treatment:  100.1, 103.8, 102.7
– Control:  101.4, 103.7, 103.1

• Simulated with means of 
– Treatment:  100, 103, 102.5
– Control:  100, 102, 101.5

• Simulated with ρ=0.9 so there is a lot of within-subject 
correlation
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Methods of Analysis

0.0229YesYesFU1 & 
FU2

Mixed

0.8838YesNoFU1 & 
FU2

Mixed

0.0060*NoYesFU1 & 
FU2

ANOVA

0.1461-YesFU2ANOVA

0.7503-NoFU2T-test

P-ValueAccount for 
Correlation

Adjust for 
Baseline

OutcomeMethod

* Don’t use!!!
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Objectives
• To understand 

• the difference between fixed and random 
effects

• the benefits and limitations of growth curve 
models

• the need to adjust for within-person 
correlation
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Bonus:  Effect of Adjusting For 
Strata

• 2 groups, 2 strata
• p=proportion in stratum 1
• s=stratum difference
• Y=outcome
• Var[Y|group and stratum]=σ2

• Var[Y|group]=s2p(1-p)+σ2

• The latter is larger and results in lower 
power


